Prescribing Eigenvalues of the Dirac Operator
نویسنده
چکیده
In this note we show that every compact spin manifold of dimension ≥ 3 can be given a Riemannian metric for which a finite part of the spectrum of the Dirac operator consists of arbitrarily prescribed eigenvalues with multiplicity 1.
منابع مشابه
Inverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملOn the Number of Eigenvalues of the Discrete One-dimensional Dirac Operator with a Complex Potential
In this paper we define a one-dimensional discrete Dirac operator on Z. We study the eigenvalues of the Dirac operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.
متن کاملDirac Eigenvalues for Generic Metrics on Three-manifolds
We show that for generic Riemannian metrics on a closed spin manifold of dimension three the Dirac operator has only simple eigenvalues.
متن کاملAn Estimation for the Eigenvalues of the Transversal Dirac Operator
On a foliated Riemannian manifold (M, gM ,F) with a transverse spin foliation F , we estimate a lower bound for the square of the eigenvalues of the transversal Dirac operator Dtr.
متن کاملEigenvalues of the basic Dirac operator on quaternion-Kahler foliations
In this paper, we give an optimal lower bound for the eigenvalues of the basic Dirac operator on a quaternion-Kähler foliations. The limiting case is characterized by the existence of quaternion-Kähler Killing spinors. We end this paper by giving some examples.
متن کامل